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Casimir problem of spherical dielectrics: Quantum statistical and field theoretical approaches
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The Casimir free energy for a system of two dielectric concentric nonmagnetic spherical bodies is calculated
with use of a quantum statistical mechanical method, at arbitrary temperature. By means of this rather novel
method, which turns out to be quite powerfute have shown this to be true in other situations alsme
consider first an explicit evaluation of the free energy for the static case, corresponding to zero Matsubara
frequency 6=0). Thereafter, the time-dependent case is examined. For comparison we consider the calcula-
tion of the free energy with use of the more commonly known field theoretical method, assuming for simplicity
metallic boundary surfaces.
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. INTRODUCTION 23 #c ,
E=3gama "V @

The Casimir problem for dielectrics—for general intro-
ductions see, for instance, Ref&~3]—has turned out to be corresponding to an outward force.
difficult to solve, in the presence of curved surfaces. The Instead of making use of field theoretical methods for
most typical example of a system of this sort is probably thatontinuous matter, one may alternatively use quantum statis-
of a single nonmagnetic compact spherical ball, surroundetical mechanical methods. We shall in the first sections be-
by a vacuum.(Equivalently, one may imagine a spherical low consider methods that were developed byyé&land
cavity in an otherwise uniform medium, thus dealing justStell, and others. Basic references to this kind of theory are
with the situation typical for sonoluminescenc&ormally,  Refs.[17] and[18]. In the Casimir context, He and Brevik
in the presence of curved boundaries one is confronted withl9] used the quantum statistical mechanical path integral
divergences when summing over all angular momenta up tmethod to calculate the van der Waals force between dielec-
infinity. This kind of divergence is usually absent when onetric plane plates. Recently, we have applied the same method
deals with plane boundaries. Physically, the divergences at® a single compact spherical bdlR0]. This statistical
coming from the fact that phenomenological electrodynammethod, although probably not so well known as the field
ics, implying use of the permittivity concept, becomes inap-theoretical methods, turns out to be quite powerful. Thus, we
propriate at small distances. There exists a natural cutoff ican use it to calculate explicitly the short range terms in the
the material, of the order of the intermolecular spacing, andingle sphere’'s free energy, and verify how the repulsive
in practice some kind of regularization has to be invoked inCasimir surface force as calculated by field theoretical meth-
order to deal with the divergences in the formalism. Moreods is simply a residual, cutoff independent, term in a com-
accurately this cutoff is the molecular diameter, as is mosplicated expression containing many terms. See in this con-
easily seen from the statistical mechanical method. By mearntext also Refs[21,16,9.
of this method the electromagnetic Green function can be It is now natural to ask what is the experimental status in
associated with the pair correlation function between dipolehis field? Recently, there has been an impressive improve-
moments. The latter quantity is zero inside the hard coresnent of the experimental accuracy as regards force measure-
and its deviation from the “ideal” Green function extends ments; one has been able to verify the theoretically predicted
typically a few molecular diameters outwards from the mol-Casimir forces, lying in the piconewton range, up to an ac-
ecule. curacy of about 1%. In Ref22] the Casimir force was dem-

In the case of nondispersive media, the use of zetaenstrated between metallic surfaces of a sphere above a disk
function methods has proved to be very useful for force, olusing a torsion pendulum, whereas in Ref23,24 an
energy, calculations. The field theory approach to the Caatomic force microscope was used.
simir problem has been considered at various places; in ad- One important lesson to be learned from these experi-
dition to the references above we may mention Rgfs16). mental works is the following: they always involte/o (in
(This list is not intended to be complete; it covers mostlyprinciple there may even be mgreodies. The Casimir sur-
treatments of nonmagnetic media, and does not include thiace force on aingle sphere is not measured. There seems
bulk of papers devoted to studies of the special case of medi@ot even to be an idea of how to measure such a force;
that satisfy the conditioruw=1. A very extensive list of probably this reflects simply that the force concept as such is
references is given in the recent report of Nesteregikal.  not observationally well defined. Thus, in order to keep con-
[14].) The Casimir energ¥ calculated by field theoretical tact with experiments, at least in principle, one ought to con-
methods at zero temperature for a dilute nondispersive consider at least two bodies. And this brings us to the theme of
pact sphere of radiua and refractive index is positive, the present paper, namely, to calculate the mutual free en-
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ergy for a system of two spherically shaped concentric noneillators one encounters in this way Gaussian integrals which
magnetic dielectrics. We will envisage that there is one comean easily be calculated. The result is independent of the
pact sphere for <a, and one semi-infinite similar medium impurities, except thainteractionsbetween them are intro-
for r>b, so that there is a vacuum gap of widtk=b—a in duced. Thus, the resulting change in free energy can be re-
between. There will be an attractive Casimir force betweerdated to these induced interactiofiseing in general time
the two media. One may object that there is still no straightdependentin the system of impurities. Likewise, in this pic- -
forward way to imagine measuring such a force; howeverture the dipole-dipole interactions are related to the Casimir
this does not create difficulties for our main purpose, whichTee energy. We employ Gaussian electromagnetic units in

is to calculate the Casimir force in a setting which maintaindiS Paper.

spherical symmetry and yet avoids the complications with

internal, cutoff dependent, forces. Il. GENERAL REMARKS
In the following four sections we shall deal with the quan- . .

tum statistical mechanical theory, with an emphasis on th%OConader the free energy(T) due to the mutual interac-

static limit (zero Matsubara frequency, where derivations are n between two spherical dlelectrlc.bodles .W'.th concentric
surfaces at =a andr=b. The attractive Casimir force be-

tween the surfaces, per unit area at the outer surface, is equal
to f=—1/[4wb?]dF/db. As shown earlier for the case of
plates[19], this Casimir force can be interpreted as the dis-

static caséMatsubara frequency equal to zpend Eq.(40) persion force arising from thermal fluctuations of molecular
y eq q. dipole moments. By our quantum statistical mechanical con-

for the time-dependent casgeneral Matsubara frequency . : . . )
Thesg expressions a.re.obtain.ed within t_he statistical me?—_'ieora'f:_?]g? mclesaﬁissOallrﬁacrzgt?;litoer?stzznqg:r}?;rfgjlje%tg?nge%t
chanical approach. Within the field theoretical approach, th?herrﬁal for anyT, The difference between classical and
finite-temperature fr nergy is given i .

te-temperature free energy is given by ) assuming, quantum situations is that in the former case these fluctua-

as mentioned, perfectly conducting walls. ; . B S :
There is one notable difference between the statistical m tlons vanish atT=0 while in the latter case they remain

chanical approach and the field theoretical approach, as far |£1ite. In Ref.[20] we considered the low densitpr small

the free energy is concerned. In the first of these cases t}I_ 1) version of the single-body problem showing, as men-

e - .
method is basically more simple, at least in principle, as on joned above, that the divergences are due to the continuum
needs only knowledge about the mode eigenvalues of th

@od.el' of the medium. A cuto_ff in Iength scale is needed. For
oscillating dipole moments in the dielectric medium; see Eq realistic systems this C‘."‘?ff is determined by th_e molecu_lar
(3). These eigenvalues are again related to the pair correl ard cores through th¢|r mfluenc_e upon the pair correlation
tion function. In the second case the calculation is more iniu"ction- For two polarizable particles the free energy due to
direct, as one first calculates the surface faiagsing from

their mutual attraction can be written k9,25

the mutual interactionon the outer surface implying use of 121 1
Maxwell’'s stress tensor, and thereafter relates the force to the - _ = - n__ _
free energy via integration of Eq67). That is, the field AF 2 nz’l n(all//azw) 2In(1 apazy), (2
theoretical method involves use of the two-point functions
for the electric and magnetic fields. As we also want to showvith 8=1/kgT. The ¢ represents the potential energy of the
that the results obtained by these widely different methodslipole-dipole interaction which for gener#l [see Eq.(3)
are in agreement, we consider some cases that are easylelow] is given by Eqgs.(6) and (7) below. Now the two
analyze analytically, by both methods. particles can be generalized to and regarded to be our two

We ought to stress again the conceptual difference bespherical bodies, in the same way as two semi-infinite paral-
tween the two methods studied in this paper. By the fieldel plates were treated in Ref19]. That means, the two
theoretical method the Casimir effect is regarded as the erspherical bodies are regarded as two particles with many
ergy shift due to the frequency eigenvalues of the quantizethternal degrees of freedom. In this way Eg) becomes a
electromagnetic field in the presence of dielectric media. Byshort hand notation wherei represents the interaction be-
the more recent statistical mechanical method this energiween two points in the two bodie®ver which we inte-
shift is regarded as a consequence ofdipwle-dipole inter-  grate, and the polarizabilities; and«, become the respec-
action between oscillating dipole moments embedded in thdive internal correlation functions of the two bodies with
molecules of the media. The latter viewpoint can be realizedheir mutual interactions switched off. As noted in Ref19]
by exploiting the analogy that exists between phonons in dhe expression(2) is formally exact for coupled harmonic
solid, and electromagnetic waves or photons in vacuumoscillators, i.e., the model that we are employing for the
Then impurities in the solid will be the analog to dielectric polarizable particles. In terms of graphs, express®rep-
particles. These impurities will couple to the phonons of theresents the ring graphs in theordering for the long-range
solid and modify their frequencies. If, however, one wants toforces, y being the inverse range of interacti¢#6]. For
do the statistical mechanics of the latter system, e.g., to cakoupled oscillators Eq2) above and Eq.3) below are exact
culate its free energy, then one can first integrate out theesults[27].
coordinates of the pure solid that appear in the path integral Extending to the quantum mechanical case, @§.gen-
representation of the quantized problem. With harmonic oseralizes to

more simple. Thereafter, for comparison we consider the
alternative field theoretical approach, limiting us for simplic-
ity to the case of perfect metallic walls at=a,b. The re-
sulting expressions for the free energy are E@) for the
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1 1
ZEE IN(1— ik hxaak i), ©) I:f dridro—, r2=r2+r2—2r;rycosd. (8)
K ri<a,rp,>b r6

where K=2mn/g with n integer (i.e., ne (—%,)). Note  This integral can be evaluated in closed fof (second
that K=%¢,, where {,, is the Matsubara frequency, reference However, in Sec. Ill we want to extend this low
=—iw andw is the frequency. density evaluation to the case of arbitrary density or arbitrary

For low density(or smalla) only the first term in the sum ¢, To do so, we need the contributions related to the various
(2) is needed. This is the situation considered in R2@]  spherical harmonics. Thus we will here perform an expan-
and found there, after some transformations, to be in agression of the integral. This will also be used as an independent
ment with earlier works. The first term means simply thatverification at the end of Sec. IV, where the more general
one takes theradiating dipole interaction squared, average theory developed there for arbitrary valueskofurns out to
(integrate over the fluctuating dipole moments, and finally yield the correct result whelK—0.

integrate over the two media. Thus Using spherical coordinates to integrate over the adgle
betweenr, andr, we first obtain k= —cos6)
_ 2
F=p j dr.dr,®, (4) N dx
. . . J:f—l(r2+r2+2r rox)°
wherep is the particle densityr;<a, r,>b, and[19] 1772 12
3 1 1 1
®==3 2 a[205(0)+ YAc(N], (5) T ()t (rptry)?

*° -1

wherer=r,—r;. (Herer; andr, are positions in different 2 (2l+2)(2l+1)2l ( ) )

media, so double counting does not ocgurhe radiating 2r1 g = 6 2 '

dipole interactions used in E¢5) can be written as
performing a series expansion to make it easy to relate to the

P(12)= o (r)Dk(12) + hak(r)Ak(12), (6) result for high density. Then,

with B Zfa 5 fw 5 87 « (I+1)l
- o | =87 0rldr1 i radr,d= 3 21 1
Dk (12)=3(rak)(ras) —ajkak (10

with o= (a/b)?' 1.
Inserted in Eq(4) we obtain @y=«)

Ax(12)= alKéZK-

Here the hats denote unit vectors, aad is the Fourier

transform of the fluctuating dipole moment of particle num-  gr=—pg, _a2><2| — 1(8 E g +1)|
beri in imaginary time; see Ed5.2) in Ref.[25]. Explicitly, 2 = 2i+1 7
from Eq.(5.10 in Ref.[25], (11)
. 1 Note that for smalle—1, Eq. (11) will be the high-
¢DK(r)__ 1+ 74+ =7 ) temperature result for which onli=0 contributes. This
3 high-temperature result at low density may in itself be of
limited interest as it does not go beyond earlier results. But
) . here we use it as a basis to make further developments. So in
Pak(r)=— —3§TZ+ ?5(r), (7) the next section the formalism is generalized to arbitrary
r density ore, although it is still restricted t& =0. In Sec. IV,
, a derivation that encompasses both arbitraryand K is
with ;
given.
iwr Kr
=—="7¢ for Im(w)<0 (or K<0), Il. THE STATIC CASE

For simplicity we first consider thstatic case, by which
and—K— |K| when extending t&>0 in (7) [see Eq(5.11)  we mean that the frequency is zer§+£0). Then the elec-
in Ref.[25]]. tromagnetic dipole-dipole interaction is the well-known
For generaK we are not able to calculate the integf4l static, time-independerialso called instantaneousne. By
in a direct way(but we can calculate it indirectly for arbi- the time-dependentase we mean the general situation with
trary density, as will be argued later, in Sec.)IWe can K=#0. Then the dipole-dipole interaction will be the radiat-
integrate, however, foK=0. The integral of interest then ing or dynamical electromagnetic field where the time delay
becomes due to the finite speed of light is involved. Note that in gen-
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eral both the static and the dynamic cases contribute to the 9F * Aoy
Casimir effect. The former, being proportionalTpcontains -~ = —2 21+ 1)1_A . a7
the whole effect whe — oo, but vanishes whefl —0. =1 =L 191

For generale one should sum up the series in HE). : . .
This will not be a simple task. However, one can include aAS we will argue below/,a; will be proportional to the

2 . .
strength factoh along with the perturbing interactiop and zggﬁt?héaf?;g ;r?;rared\, - Thus integrating Eq(17) we
differentiate Eq(2) [or Eq.(3)] to obtain 9y

Al ,8F=£E (21+1)In(1-Aja)), (18)
:35)\ l—_l//(allﬂcaz), (12 2~
which clearly yields an attractive force between the two
where spherical bodies.
It should be noted that the seri€kd) is convergent as it
o= d _ contains no self-energy. From E@.6) it is seen thaA|<1
1-ayparyp and o decays similar to an exponential ks:o, implying

Ajo,<1. Further, no cutoff is needed as EG8) only in-

Here thea; . a; will be the pair correlation function for the cludes the free energy shift due to the mutual interaction
fluctuating dipole moments. As shown in Appendix A in Ref. petween the two bodies. A “self-energy” would arise if in-
[19] the ¢ (apart from a simple factdis the Green function  teractions within each body were considered. But yet the
for the electromagnetic problem with the dielectric mediumnecessary minimum distance between molecules would pre-
present whiley is the one for vacuum. Thus we can utilize yent the latter expression from divergifg0].
Maxwell's equations for electrostatics to obtain this zero fre-
quency Green function o1/ in the presence of two dielec- IV. FURTHER ANALYSIS OF THE STATIC CASE
tric spheres.

The electrostatic potentiab fulfils the Laplace equation ~ The time-dependent cask ¢ 0) will be more complex to
V2d =0 with & =const. Splitting off the spherical harmonic handle as we are not able to perform analytically the gener-

factor Y;m=Y,m(6,¢), alization of the integratiori9) that gave the result€ 1) and
Eqg. (18). We find, however, that this case can be handled
O=D,(r)Y|m(6,¢), (13)  indirectly, noting that the quantity
we can write the radially dependent term in the form M= apayy (19
F 1/t ! in Egs.(2) and(12) can be regarded as a matrix. We want the
B —|, r<a, trace of these expressiofias well as the expressiof3)],
e\r a which amounts to integrating over positions and dipolar mo-
a\'+t ! ments of the particles. The matrix can be transformed into a
®=4 Cly| FCigz|. a<r<b (14 diagonal matrixA through some matris,
a\'*t M=SAS L. (20)
D F ,  b<r.
N Then
From the boundary conditions the coefficients can be deter-
mined. We give the coefficierld belonging to the exterior Tr(Mq)zTr(Aq)zz A
region i
) (21+1)2 A 15 where\; are the diagonal elements af. Also,
C(e—1)2(1+1) (1-Ao)’ _
(e=DAI+D) (M=3 (S e (21
where

Thus to obtain the free enerd®) or (3) we only need the
a|?*? eigenvalues\|. Use of the spherical harmonidg,, for our
and o= b present problem produces such a diagonalization and, as the
(16) results(17) and (18) show, theA o, represent these eigen-
values. The prefactorl2-1 is simply the degeneracy factor.
The coefficientD represents the change of the field for However, without performing the integratio(lO) the
>b relative to thee=1 case for a given point source. Via identification ofA, o, with the appropriate eigenvalues is not
Eqg. (12) the free energy is now obtained in a straightforwardobvious and cannot be concluded from Etf) alone. Then
way. For smalle —1 the quantity(12) is twice the quantity —we turn to Eq.(12) and consider the correlation functi¢or
(11). Thus the expressiofi2) becomes the equivalent Green functiprvhich can be expanded as

(e DAI+D)
e+ 1)+ 1](el +1+1)
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Relating this to Eqs(15) and(24) we see that the eigenval-

alz,/;cazzl_al& = alz/xazz M" (22 ues ofA areN;=A,oy, D/Dy=1/(1—\;). Thus we recover
ez n=0 the results17) and (18) when)\, is used in the expressions
. _ . . . (12) and (2), taking into account the degeneracy factdr 2
mgt] M=a;fazy. Applying StheM is made diagonal such 27" 0, means, the present indirect approach is fully con-
sistent with the explicit integratio(iL0) that led to the same
1 results.
S laypa,S=S tapa,S—— (23

1-A°
V. THE TIME-DEPENDENT CASE

and A or its eigenvaluea; can be identified via the ratio Including the time dependence the solutions of Maxwell's

a e 1 equations become more complex. One has to solve the vector
-1717c72 g _ (24)  wave equation, and the fields have to satisfy the boundary
arpas 1-A conditions at the two surfaces. Again the spherical harmonics

Ym can be used, and the remaining problem how to decom-
pose the vector fields parallel and transverse to the spherical
surfaces is conveniently dealt with in terms of the Tiké&ns-
verse magnetjcand TE(transverse electrianode[28]. Ap-
| plication of the angular momentum operatos (1/i)r XV
(with 2= 1) creates a vector normal toi.e.,r-L=0, and is
H;us parallel to the spherical surfaces. IAxommutes with

e V2 operator of the wave equation, and lasdoes not
contain differentiation with respect g the wave equation
has TM solutions of the form

S

Here theD in Eg. (15) represents the numerat¢he full
correlation functioin while the denominator can be identi-
fied with the first term in a chain bond expansion with one
single potential bon@s and two hyperverticea; anda, (or
correlation functions for the two media with their mutua
interaction switched off By chain bond expansion we mean
the graphical representation of the terms in the expansio
(22), where hypervertices; alternate with potential bonds
. This notation has its origin in the statistical mechanical
theory of fluids[26]. To go beyond standard mean field
theory the Mayer graph expansion can be rearranged, and the d(r)
chain bond will then become the leading correctidar B=—LY\y, (28
forces of long rangeto the correlation function of the refer-
ence systerie.g., hard sphergsin the present case with \\hered(r) is some function of. Likewise the TE solutions
harmonic oscillators the expansion turns out to be exact fof,| ;o with B replaced byE.
the pair correlations of amplitudésorresponding to Gauss-
ian fluctuations

The first term of the expansiof22) is now obtained by
considering the two spherical bodies separately, or equiva- VXB= e —ikeE, (29
lently by considering Eq(14) first with a=0 and thereafter
with b=c0. Then there will be no multiples bonds going  wherek=w/c. Thus we need the formul@8]
back and forth, as there are no longer two media present.

The E field is now obtained from

First take away the inner sphere, which is done by putting . R d
a=0. Solving forD one obtains B=0) IVXL=rv°-V 1+r(?—r ' (30
21+1 Now applying boundary conditions on the spherical surfaces,

(25 we find that the condition on the radial component Eof

coincides with that oB, so that we need its compondat
The amplitude ratidD,/C will representa, (or a;). Sec-  transverse ta which comes from the last term in E(B0)
ondly, take away the outer sphere, which is done by puttingvhere only derivatives with respect to the polar angles are

=Po= i &

b=o0. Solving for C one then obtainsf=0,C,=0) needed from th& operator. The latter again act only ¥y,
which are the same on both sides of the interfaces and can
Cc=C. = 2l+1 (26) thus be disregarded as far as boundary conditions are con-

“ el+l+17 cerned. Therefore we are left with thedependence o ,

) where the term of interest is given by
The amplitude raticC../(1/e) [see Eq.(14)] will represent

aq (or a,). ThusDg will representa,ias, as i is repre-
sented by 1. Likewise theD as given by Eq(15) repre-
sents the full correlatiofor Green function as both spheres
are present, by which the ratid/D, yields the sought ei- The solutions of the wave equation for a given frequency are

d

1+r— w

r

_do(n)
© o dr

(31)

genvalues of Eq(24). the Riccati-Bessel functions. As independent pair of func-
Combining Eqgs(25) and (26), tions it is convenient to choose the functions that are propor-

, tional torj,(kr) and torh(*)(kr); the first one because of its
D, (21+1) 27) finiteness at the origin, the second because of outgoing

- [e(I+21)+1](el +1+12)" boundary conditions at infinity. After frequency rotation, and
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convenient normalization, these are the functions denoted by (£S4Sas— SaSn.) (£€4€h. — €pEL,)
s ande in the field theory section below, in E¢53). For No=— ; — (38)
simplicity we will in the present section omit the subsctipt (£€3Sas ~ €aSa;) (£€p:Sp~ €p,Sp)

We will let subscriptsa,b refer to functions taken at
=a,b, and add an extra subscriptto indicate that the func-
tion is taken inside a dielectric medium. As in E44) we
can now write

are the eigenvalues of interest in the construction of the free
energy; see the argument above E) in Sec. IV.

The static case §=0) is recovered by puttingg,=e
=1i" and s,=s=r'"1, which yields\, =A 0, in accor-

e +Bs r<a dance with Eq(15). Note that Egqs(33) are somewhat dif-
© ° ' ferent from those used in the static casesas replaced by
®(r)=y Cet+Css, a<r<b, (32 1/e while | andl+1 are interchanged, but the result is the
De,, b<r. same.

Whenw # 0 there is also another set of modes, namely the
As compared to Eq(14) the coefficient ¢ for r<a has TE modes. They are obtained by replacBgvith E in Eq.
been dropped since th&(r) represents the magnetic field, (28), and by interchanging andE in Eq. (29) while remov-
but has no further consequence as it only affects the otheng the factore and the minus sign on the right hand side.
coefficients by a proportionality facter. Requiring continu-  Again imposing boundary conditions, Eq&3) are recov-
ity of the tangential componen®, andE, across the sur- ered, except that the factorelis no longer present. Solving
faces we obtain the equations for D we recover the result(84)—(38) also, except that all
factorse are no longer present. The eigenvalues of interest
€ao+BSe=Ce 1+ CyS,, now become

_ (S;Saa - Sase,ls) ( etl)ebs - ebe{as)

(€4Sas ~ €aSac) (€0:Sh— €n:Sp)

1
g(e;s+BS;s)zce;+clsél’ | (39)

Cey+Cy5,=Dey,, With the eigenvalue$38) and (39), the expressioii18) for
the free energy can be extended in a straightforward way to

D ime-
Cet’)+Cls{)=;e{m, (39 the time-dependent case, and we get

1 oo
where we emphasize that the primes here mean differentia- BF= 2 EK: Z’l (21+D)[In(1=Aq)+In(1=N)], (40
tion with respect ta.
To obtain the eigenvalues of interest we now proceed ag/here the prefactorl2- 1 is again the degeneracy factor, and
in Sec. IV. So as in Eq(25 we find from the two last K=27n/g with n integer(i.e., ne{—®,»)).

members of Eq(33) (i.e.,a=0) Finally it can be noted that for two parallel plates sepa-
rated by a distancel the free energy can be written in a
) epS,— €,Sh similar general form. This energy can be found by integrat-
D=Do=c,C, with cp=e—————, (34  jng the surface force given by E€.9 of Ref.[19]. This

€p:Sh— €p,S : A
&Fbe>p ™ Cbeb surface force is the famous Lifshitz res[®9]. The parallel

and as in Eq(26) we find from the two first members of Eq. plates result for the mutual free energy per unit area becomes

(33 (i.e.,b=o andC;=0)

%)

1
PF=ar ; gn/c“”(l_)‘eq)+|n(1_)‘q)]q da

(35 (41

where

. e; Sae_eassé
CZszcl, with 012%.
£€,3S4: — €354,

Combining these we obtain, similar to EQ7), Neq=Ane~ 20, N =Bje-2
Dgo=c,Cs. (36) with

As explained below Eq(24) and in connection with Egs. )

(25) and (26), this D, represents the chain with a single A :(8_") B —

potential bondy. The full chain bondsee explanation below " letk) T

Eq. (24)] will be obtained by solving Eq$33) as they stand.

1—«\?

1+«

. . 27172
This yields = 1—(8—1)(C—q . K=—ifiw=fiy=2mnlB.
Do
D= 1-n,’ (37 It should be noted that Eq&10) and(41) are general results,
valid for arbitrary permittivitye(w) and temperature, and
where they give the free energy due to the mutual interaction be-
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tween the two media. There are no diverging self-energy 2141
terms. From Eq(37) one must expect,;, \;<1, andinthe i(EL(r)El(r’))w=(4rr)E —_—
K=0 case (180 one has the converging factop =1 4m
=(a/b)?' 1. This convergence will not be weakened when

K#0 as then exponential factors also enter the solution of + iirir’G,(r r')
the wave equation for imaginary frequency. T ’

w?Fy(r,r")

., (49

VI. FIELD-THEORETICAL APPROACH: , L (am) &2+l ,
THE SURFACE FORCE I(H(N)H(r )>w=”—, 21 2 (DR,

We now consider, as an alternative, the field theoretical (47)
approach to the same physical system, with the simplifica-
tion, however, that the compact media are perfect conductors
(e ==). Thus we can compare with the above general result
in this special case. We shall make use of the local Green-
function method, as developed in particular by Schwinger J
and his school. A basic reference to this kind of theory ap- +— Er—,r’ﬁ(r,r’) .
plied to the case of spherical symmeteyperfecly conduct- rr o
ing shel) is Milton et al.[30]. To our knowledge Milton was Here it is assumed that the vectorandr
also the first to apply this theory to the compact ball proble |
[4]. Generalization of the theory, so as to take into accoun
electrostriction, was made by Brevj8l]. Later references
are[5-8] and[10,11]. (This list does not include the main
part of the references dealing withu=1 media, as well as
papers dealing with the mode summation methdde now

®?G(r,r")

i<Hl<r>HL(r'>>m=<4w);l

(48)

" lie in the same
ngular direction. The radial difference-r’, however, does
ot have to be small.

For simplicity we shall denote the scalar Green functions
generically byA,(r,r’) (thus A, is eitherF, or G)). Their
governing equation is

putf=c=ks=1. 2 29 1(+1 1
Once the assumption about perfect conductors is ac- | — + — — + »2— (+1) A(r,r')y=—=8(r—r").
cepted, the formalism becomes relatively simple. Since all |ar? T dr r2 r?

fields in the regiong <a andr>b are equal to zero, we (49
have to consider the fields in the vacuum gap only. Th
Green functionl'(x,x") for two spacetime pointg and x’
has a Fourier transfordi(r,r’,») defined by

e'I'he solution contains spherical Bessel functions, and has the
general form

* do . ik ; . hD (1)
"y = __aier ’ Af(rr')y=——— kr_)—C,h*(kr h~’(kr
(') f e e, @2 A= Ltk Sk Tk
with 7=t—t’. Note that the convention of Fourier transform ~Cuii(kr2)], (50

used here implies a change of sign of (i.e., o— — ), - ~ ] ] )
compared to the definition used in the preceding sectiondvherek=|w[, C; and C being constants. This form satis-
e.g., Eq.(7). The governing equation foF, as following  fies the discontinuity condition following from Eq49) on

from Maxwell’s equations, is the radial derivative ofA, at r=r’, with the Wronskian
W{j,(x),h{Y(x)}=i/x?. Taking into account the boundary
VXVXI(r,r',w)—o?T(r,r' o)=w?lér—r’), conditions atr =a,b we can determine the constants: for the

(43 F (or TE) mode we get

and the spectral two-point function for the electric field com- ~ S(ka) - ‘e (kb)
ponents is Cie(ka)==——, Cr(kb)y==7——, (52
e(ka) si(kb)
HE(NEBWT))o=(4mTi(r.r’,) (“4) whereas for thés (or TM) mode
(the prefactor 4r appearing because of our present use of the ~ ~

Gaussian system of unjtsThere are two scalar Green func- C\o(ka)= si(ka) - )= & (kb) (52)

tionsF,(r,r’) andG,(r,r’) since there are two independent B(ka) " (kb))

field modes. The connection between these functions and the

spectral two-point functions is Here, we let prime mean differentiation with respect to the
whole argument. We now perform a complex frequency ro-
tation w—iw, k—i|w|=ik, and replace the conventional
Riccati-Bessel functions;(x)=xj,(x), &(x)=xh(x) by

(45  new oness|,e defined according to

A7) & 21+1
i<Er(r)Er(r')>w:(”—W,) 21 2, [ +DG(rr),
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i X
$100=(=)"" ()= /5 1,00,

e (x)=i""Te,(ix)= \/Z?X K, (%).
[and similarly fore(y)], that

Here v=1+1/2, 1, and K, are modified Bessel functions,
and the Wronskian of importance now W{s,,g}=—1

The frequency rotation implies that we replace the “tilde”
constantsC by new constant€, in accordance with the re-

lation C(ix) = (— 1) *1C(x). Explicitly,

PHYSICAL REVIEW E63 051101
Substituting Eqs(55) and(57) into Eq.(58) we obtain, when

taking into account the governing equation for the Riccati-
Bessel functions

(53) s (y)=[1+1(1+1)/y*]s(y) (59

S (Y)—Cir(x)ef (y)
Si(Y)—Cie(X)e|(y)

21+1
2 b4 y 21 4

s/(y)—Cis(x)€/'(y)

S Cetel ) °0
S(X) e (y)
Cr(X) ===, Cur(¥Y)=77,
&(x) si(y) From this expression it is apparent how both moBesdG
) contribute to the force.
()= S/ (X) (y)= ¥ e/(y) (54) We can write Eq.(60) as a sum of the following two
6= e %) Cie s/ (y)’ terms:
where we here and henceforth betand y be defined by fo="f O+ f (61)
x=ka, y=kb.
We now return to the expansioK45)—(48) for the spec- where
tral two-point functions. Of main interest for us are these
functions when the points andr’ are close to each other, —1 (= Zo21+1s/(y)  s/(y)
but not overlapping. We moreover set the time-splitting pa- fE,O)= 4f ydy>, 2 3 } (62)
rameterr=t—t’ equal to zero. Substituting the two-point 2mh =1 4w [s) sy

functions in Maxwell’s stress tensor we can calculate the

surface force density on either of the two surfaces. We . 1 21+1 4 Si(X) e(y)
choose the outer surface=b, since it will then become easy fp= Zwsz “ 4T 3b - W W

to relate the force to the free energy. Writing for simplicity

(E2(r)) instead of(E,(r)E.(r")),/_,, we obtain forT=0 s/ (x) e/ (y)

the various two-point functions at=b—: Te ™ S5y ] (63

(4) dy

wb?
si(y)—Cis(x)el(y)
s/ (y)—Cig(x)e/(y)’

(E2(b—))= 2 —|<|+1>

(55

(E2(b—))=(Hf(b—))=0, (56)

2|+1

|=1

<Hi(b—>>—

si(y)—Cis(X)e(y)
s/(y)—Cic(x)e/(y)
N s/ (y)—Cie(x)e/ (y)

Si(Y)—Cie(x)e(y)

(57)

(the prefactors 4 again reflecting the Gaussian units

with y=Kkb (the operatow/ab is taken at constant value of
a). The expressiof62) is the same as the inner contribution
to the surface force on a perfectly conducting stia0,5].
This term does not involve the interaction between the two
media, and will be discarded in the following. Of interest for
us is the interaction terni63). As s;(y)=3¢€¥ and e(y)
=e Y for largey, it is evident from Eq(63) thatf,— 0 if the
outer surface recedes to infinity while the inner surface is
kept constant. This is physically as it should be.

A remark is here in order, concerning the physical mean-
ing of the two force terms in Eq61), in particular the pos-
sibility of making measurements. It ought to be emphasized,
first of all, that the ternf () is a mathematical construct. It
does not seem to be possible to measure this term, not even
in principle. If one imagines the case of a perfectly conduct-
ing singular shell with radiug, the case studied in Rgi30]
and also in Ref[5], thenf f)o) has to be taken together with a
similar term on theoutsideto make up a surface force that in
principle ought to be measurable. However, as far as we

Using Maxwell’s stress tensor we can write the surfacexnow, no measurement has so far been made for even such a

force density on the outer surface as

o= — —(E2 = (e
b= g (EF(b=))+ g—(H?(b-)). (58)

complete shell. In our case, whiat measurable, at least in
principle, is the interaction terni63). For instance, one
might envisage to measure the attractive force between a
micrometer-sized conducting sphere and a semispherical
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trough in a conducting plate, thus some kind of generalizaamountdb, while the inner surface is kept constant. The

tion of the atomic force microscope measurements reportecklation

in Refs.[23] and[24]. _
The expressions above refer to zero temperature. The int 1 gF™

transition to finite temperatures is made by means of a dis- fo=- 4mh? b

cretization of the frequencies

(67)

. is integrated fromb to infinity, noting thatF™=0 atb=o.

k—K=2mn/pg, x—Ka, (64  Making use of Eq(66) we thus obtain, dropping the super-
si(x) e(y) [ s/ (x) €/(y)

script “int,”
with n an integer. The rule for going from frequency integral

F=2>' In{ | 1— - :

L, - prezz 2 { a0 s e s|<y>}

J o|”|<_>7 20’, (65) (68)

e

to a sum over Matsubara frequencies is
0
valid at arbitrary temperatures. Comparing with the more
where the prime on the summation sign means thatnthe general result of Eqs38)—(40) in Sec. V one finds thflt Eq.
=0 term is taken with half weight. The finite-temperature (68) agrees with these whers—e as then es;s,,

1

force expression accordingly becomésecall that v=1  >S;S;., $;8.:<<SaS,, etc.[with s,=s|(x), etc., as intro-
+1/2) duced above Eq32)].
At T=0, where the free energl is the same as the
_ -1 &, - 9 s(X) e energyE, we can write
ety ,,_mHl_L)Ly)}
2wb?g =0 =1 db e(x) si(y) 1 (= 7
si(x) el(y)
E=—| dx2, vIn{|1- —— —7=
s/ (x) e/(y) ] 66) majo =1 e(x) si(y)
e[(x) si(y)]]’

(69)

B S/ (x) e{(y)”
e (x) s((y)]]

Expressiong68) and(69) hold for arbitrary widths of the
. annular region. It is of interest, before embarking on numeri-
Ral evaluations, to analyze some limiting cases by analytical
means. The limiting case of immediate interest is that of a
narrow slit, i.e.,

where nowx=2mnal/B, y=2mnb/ . _
As for measurements of a force such &8 there are

are liquids, and that the outer spherical shell can m@viee
inner shell can also move if liquid is added or removed
through a small pipg.However, there is an extra complica-
tion compared to the case of parallel plates, namely the b—a

change ofradius of a spherical surface. This will change the &= a <1. (70
free energy associated with the surface tension. Although the

latter change of energy is finite, a more precise evaluation ofhjs case is motivated physically from the fact that the Ca-
it will obviously be a complex task. The molecular structure gimir measurements are made for small separations only, and
has to be taken into account at the surface where the densitysy pecause we have in this way the possibility to check our

changes abruptly. results against the standard results for parallel plates in the
It can be noted, however, that the sum of the two surfacg it when £-0.

energies must be the opposite of the general redajt for At T=0 we find, wherx andy lie close to each othd],
a=b, i.e., with the two spherical surfaces fused together.

One is then left with no surfaces at all, and the bulk free s(X) e(y) s/(x) e/ (y)
energy applies everywhere. However, simply puttingb in & (X) 5(y) = e (X) S (y) =
a continuum approach does not work; E40) will diverge ! 1y ! 1y
unless a cutoff is introduced for largi¢o mimic the molecu- to O(1/») in the uniform asymptoti¢or Debys expansion.
lar diameter. Whether the self-fordg” in Eq. (62) is pos-  Here
sibly related to such a surface tension energy or not is a
problem that we have so far not been able to clear up.

e Ve, (71)

$=2£\1+7°

1 1 ¢ X 72
JEE— + ... , 7= —.

21+27 o (72
VIl. THE FREE ENERGY, ANALYTICALLY

AND NUMERICALLY Keeping only the first term, we find th€=0 interaction

Since we have calculated the force density ondheer ~ €nergy to be
surface due to the mutual interaction, it is easy to derive the 5 = .
corre_sponding expression for the interac_tion free en&fty E=_— 2 sz dzm(l_e—zgw/lﬂZ)_ (73)
We imagine the outer surface to be displaced by a small ma [= 0
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This expression can be processed further, if we make artifact in Eq.(79) is related to the fact that= is consid-
power expansion of the logarithm and take into account thered, while in Eq.(18) w=0 is consideredeforethe limit

property="_,v%e” "¢ 2/¢$* when ¢—0 [32]. Then, e—o is taken.
In the case of a narrow slit we obtain from E@6) the
-1 fw dz m 1 n=0 contribution
E= 4 =— —, (74
2mag® (@, (1+z9)%2 18 ¢ (9

_ o _ BF(n=0)=2> vin(1—e %), (80)
which corresponds to the following interaction energy per =1

unit surface(total surface ared=4ma?, andd=b—a): i . ) )
Again making a power expansion of the logarithm, and ob-

E 2 1 serving the relationshix;_,ve” "¢=1/¢? when $—0, we
AT 7204 (75) get
L . . . . {(3) 1

This simple calculation thus provides us with a satisfactory BF(N=0)=— "= —, (81)

check: Eq.(75) is the conventional expression for the Ca- 2 ¢

simir energy of two parallel plate§The expression includes )

the effect of retardation. That is, the distandds much  Which corresponds to

larger than the characteristic wavelength of the absorption

spectrum of the mediumThus, by retaining the first order BF(n=0)  ¢(3) 1

term in & we see that our theory reduces to the standard A T 8w 2 (82)

=0 theory. Corrections to the theory arising from the curva-
ture of the surfaces can in principle be worked out by goingagain, this is a satisfactory check, as Eg2) is the conven-
to larger powers irg. tional high-temperature result for parallel plates.
At finite temperaturgswe obtain for the free energy For anarrow slitwe may also obtain the known result for
. a pargllel plates configur?tion more 2g¢nera|||y. Inblthe _\g]ave
/ PN B equation the terrh(l + 1)/r“=I(l + 1)/a* is replaceable wi
BF:A'Z:O ,Zl vin(1—e 280, t=2malp. k? wherek; is trr?é tran)sverse(wavia vector,pi.e.,
(76) ,

|+1 =1(I+1)=k*a?. (83

2

V2=

This expression, as before, implies keeping of only the first
term in the expansiof72), but it puts no restriction on the
temperature. When | is large we can regard it as continuous quantity,

Let us consider the limiting case of high temperaturesyyhereby the sum can be replaced by an integral. We then
first going back to the expressi@68), holding for arbitrary  have

widths d. For the highest temperaturédassical limi}, only

the lowest Matsubara frequencyn0) contributes. As *

x=nt, y=bnta, it is seen that we then need to evaluste > (2l +1)—>f (2l +1)d|=282J k dk,. (84
ande, when the arguments tend to zero. As =1

Jr (x| @2 T(v) (x| (r+12 Further,
s|(x)=m 5) : e|(X)=W(§) - zmd—Kd
77 = grdTKd
for small arguments, we have d
gV:_kLa:de, (85)
si(¥) e(y) s e(y) (a)?*? 9 a
e(x) si(y) e/(x)si(y) \b ’ or
so that the contribution from=0 becomes 262 +n%t?2=2qd, with g?=k?’+K? (86
” a\?*! Insertion of this into Eq(76) yields
F(n=0)= 20+ D)Inj1—| = 79
BF(n=0)=2, (2I+1) (b (79

This is in agreement with our previous expressi@8) (A,
=1 whene—»), except from a factor 2. The physical rea-
son for this is that botlF and G modes contribute to Eq. usingqdg=k, dk, . The surface force density thus becomes
(79, whereas only one mode contributes in E88). This  (b—a)

,8F=4a2ngo' f:qdqln(l—e‘zqd), (87
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50 6.0
4.5 557
5.0
45+
4.0+
35+
3.0+

4.0
3.5
3.0

2.5

log ,(:BFt) 2.0+ log (-BF) 23+
1.5 2.0
1.04 154
10
0.5+
0.5
0.0+ 0.0
0.5 054
-1.0 T T T T T T T -1.0 T T T T T T T 1
0.00 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00
d/a d/a
FIG. 1. Logarithm(base 10 of mutual nondimensional free en- FIG. 2. Same as Fig. 1, but lagi— BF) is shown, as appropri-

ergy, logo( — BFt)=log,o( —27aF), versus relative widthi/a for ate for the case of high temperatures. Etarger than about 50 the
various values of the nondimensional temperats@a/B. For  curves are overlappin{pnly one curve is drawp consistent with
0<t<1 the curves are overlappir(ge., only one curve is drawyn  Fig. 3.

consistent with Fig. 3.

the curve calculated fdr=0 (via anx integral and arh sum)

1 oF 2 ;[ e2ad is indistinguishable from other curves calculated in the
- > oa- T —a qqu—_, whole temperature regiofvia a double sumup tot=1
4mal dd mB =0 Jg, (1— e 2ad) temp g _ Imup .
889) Numerically, for d/a=0.1 the @fference in log(— BFt)
between the casdés=0 andt=1 is found to be about 10'.
For zero temperature, as mentionédjs the same as the
energyE.

Whereas the representation in Fig. 1 is most useful for
low temperatures, we show in Fig. 2 the representation of
logio( — BF) versusd/a. This is convenient for high tem-
peratures, since now the curves for higlstay inside the
figure and tend to overlap. The curve calculatedtfe50 is
actually indistinguishable from the shown curve referring to
t=200. This fact reflects thdt is proportional tat, thus in
; accordance with the behavior of high temperature mutual
present numerically calculated results for the free ENer9¥%ree energies for classical harmonic oscillators in general.

when the walls are conducting =). All results are given For a narrow slit, we expect that the calculation agrees with

in nondimensional form. The numerics turned out to bethe approximate formulé82). We may check this in the case

rather demanding; as preliminary tests indicated that Matlab
would be insufficient for our purpose we turned to standard

sz

with ¢,=K=2mn/B being the Matsubara frequency. This is
in agreement with Eq(2.9) in Ref. [19] (A,=B,=1 for ¢
=), It is also in agreement with E@3.8) in Ref. [33] [it
should be mentioned tha® in our present notation, Eq.
(86), is the same as? in Ref.[33], and also that the distance
d above is the same asin Refs.[33] and[19]]. Note that
whereas the expressi¢88) presupposes a narrow sfiarge
), there is no restriction on the temperature.

After these preliminary analytic considerations we now

FORTRAN routines and made use of them throughout. On a e

logarithmic plot with base 10, Fig. 1 shows how 475

log,o — BFt) =log,o( —27raF) varies with relative width

d/a for various values of the nondimensional temperature 4307

=2malB. At zero temperature, an integration routine was 425

used for thexintegral in Eq.(69). At finite temperatures, the 1, (g G0l

double sum in Eq(68) was calculated as it standghus 4,00

without expansion procedures for the Riccati-Bessel func-

tions), with use of theroRTRAN library for the Bessel func- 3759

tions of half-integer order. Allowing the numerical toler- 2504 dla=0075

ances in thd sum as well as in th@ sum to be equal to .

10" %, we found for the case of=0.01 andd/a=0.1 the 325 s 005

necessary number of terms in theum to be about 415 000. _

For larger widths the necessary number of terms turned ou 3.00 T T T w ‘
to be considerably less; for instance tda=1 and the same o 00 O‘iogwt O

t the number was about 8900.
A characteristic property of the curves in Fig. 1 is that FIG. 3. Variation of F versust for the case ofd/a
they tend to overlap in the case loiw temperatures. Thus ={0.05,0.075,0.1
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of t=200, d/a=0.05: the machine calculation then yields gap, i.e.,o~1/d. Now, from Wien’s displacement law we
BF=—249.7, whereas Eq82) yields BF=—1¢(3)(a/d)? know that the maximum of a blackbody distribution occurs
= —240.4, thus an error of 4 %. The reason why the accurapat a frequency ofw,,=2.8/3. Temperature effects are ex-
here is only moderate, is most likely that the width parametepected to become significant whenis comparable tao,y,.
d/a=0.05 is not small enough to represent a narrow slit to gutting w~ w,,, we obtaint=_2ma/B~2a/d. In the present
high precision. Generally, it turned out to be difficult to cal- case this amounts to- 20— 40 (log;, t~1.3— 1.6), which is
culate cases of higher temperatures or more narrow slits thageen to be in good agreement with the location of the shoul-
those shown in the figures, without entering into special alyer in Fig. 3. Moreover, for higher temperatures, the propor-

tera’gions o_f t_he:o_RTRAN routin_es. o tionality of F to t is clear from the figure.
Finally, it is of interest to display explicitly the free ener-

gy’s low-temperature plateau, and its high-temperature pro-
portionality tot, for a fixed value of the relative width. This

is done in Fig. 3, for the cases dfa={0.05,0.075,0.1 The
horizontal plateau is seen to prevail quite accurately until a We thank Gabriel Barton for sending us a copy of his
gradual increase takes place in the region roughly betweerecent papefl16]. The reader is referred also to the recent
t=10 andt=230 (log,;30=1.477). It is notworthy that this finite-temperature paper of Klicét al.[34], and to the paper
behavior is in agreement with the following simple physical of Kleinert some years ag@5], the latter employing a cal-
argument: The most significant frequenciesontributing to  culation technique similar to ours. Personal communications
F are generally of the same order as the inverse width of theith these groups are gratefully acknowledged.
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