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Casimir problem of spherical dielectrics: Quantum statistical and field theoretical approaches
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The Casimir free energy for a system of two dielectric concentric nonmagnetic spherical bodies is calculated
with use of a quantum statistical mechanical method, at arbitrary temperature. By means of this rather novel
method, which turns out to be quite powerful~we have shown this to be true in other situations also!, we
consider first an explicit evaluation of the free energy for the static case, corresponding to zero Matsubara
frequency (n50). Thereafter, the time-dependent case is examined. For comparison we consider the calcula-
tion of the free energy with use of the more commonly known field theoretical method, assuming for simplicity
metallic boundary surfaces.
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I. INTRODUCTION

The Casimir problem for dielectrics—for general intr
ductions see, for instance, Refs.@1–3#—has turned out to be
difficult to solve, in the presence of curved surfaces. T
most typical example of a system of this sort is probably t
of a single nonmagnetic compact spherical ball, surroun
by a vacuum.~Equivalently, one may imagine a spheric
cavity in an otherwise uniform medium, thus dealing ju
with the situation typical for sonoluminescence.! Formally,
in the presence of curved boundaries one is confronted
divergences when summing over all angular momenta u
infinity. This kind of divergence is usually absent when o
deals with plane boundaries. Physically, the divergences
coming from the fact that phenomenological electrodyna
ics, implying use of the permittivity concept, becomes ina
propriate at small distances. There exists a natural cuto
the material, of the order of the intermolecular spacing, a
in practice some kind of regularization has to be invoked
order to deal with the divergences in the formalism. Mo
accurately this cutoff is the molecular diameter, as is m
easily seen from the statistical mechanical method. By me
of this method the electromagnetic Green function can
associated with the pair correlation function between dip
moments. The latter quantity is zero inside the hard co
and its deviation from the ‘‘ideal’’ Green function extend
typically a few molecular diameters outwards from the m
ecule.

In the case of nondispersive media, the use of ze
function methods has proved to be very useful for force,
energy, calculations. The field theory approach to the
simir problem has been considered at various places; in
dition to the references above we may mention Refs.@4–16#.
~This list is not intended to be complete; it covers mos
treatments of nonmagnetic media, and does not include
bulk of papers devoted to studies of the special case of m
that satisfy the condition«m51. A very extensive list of
references is given in the recent report of Nesterenkoet al.
@14#.! The Casimir energyE calculated by field theoretica
methods at zero temperature for a dilute nondispersive c
pact sphere of radiusa and refractive indexn is positive,
1063-651X/2001/63~5!/051101~12!/$20.00 63 0511
e
t
d

t

th
to

re
-
-
in
d
n

st
ns
e
e
s,

-

a-
r
-

d-

he
ia

-

E5
23

384

\c

pa
~n21!2, ~1!

corresponding to an outward force.
Instead of making use of field theoretical methods

continuous matter, one may alternatively use quantum sta
tical mechanical methods. We shall in the first sections
low consider methods that were developed by Ho”ye and
Stell, and others. Basic references to this kind of theory
Refs.@17# and@18#. In the Casimir context, Ho”ye and Brevik
@19# used the quantum statistical mechanical path integ
method to calculate the van der Waals force between die
tric plane plates. Recently, we have applied the same me
to a single compact spherical ball@20#. This statistical
method, although probably not so well known as the fie
theoretical methods, turns out to be quite powerful. Thus,
can use it to calculate explicitly the short range terms in
single sphere’s free energy, and verify how the repuls
Casimir surface force as calculated by field theoretical me
ods is simply a residual, cutoff independent, term in a co
plicated expression containing many terms. See in this c
text also Refs.@21,16,9#.

It is now natural to ask what is the experimental status
this field? Recently, there has been an impressive impro
ment of the experimental accuracy as regards force meas
ments; one has been able to verify the theoretically predic
Casimir forces, lying in the piconewton range, up to an
curacy of about 1%. In Ref.@22# the Casimir force was dem
onstrated between metallic surfaces of a sphere above a
using a torsion pendulum, whereas in Refs.@23,24# an
atomic force microscope was used.

One important lesson to be learned from these exp
mental works is the following: they always involvetwo ~in
principle there may even be more! bodies. The Casimir sur
face force on asingle sphere is not measured. There see
not even to be an idea of how to measure such a fo
probably this reflects simply that the force concept as suc
not observationally well defined. Thus, in order to keep co
tact with experiments, at least in principle, one ought to c
sider at least two bodies. And this brings us to the theme
the present paper, namely, to calculate the mutual free
©2001 The American Physical Society01-1



on
m

e
h
e
ic
in
it

n-
th
ar
he
ic-

m
th

m
ar

t
on
th
q

e
in

f
t

n
o
od
sy

b
el
e
ze
B
rg

th
ze
n
um
ic
th

t
ca
th
gr
o

ich
the

-
re-

-
mir
s in

-
tric
-
qual
f
is-
lar
on-
s at
rely
d

tua-
n

n-
uum
or
lar
ion
to

e

two
ral-

any

-

-
th

c
he

J. S. HO”YE, I. BREVIK, AND J. B. AARSETH PHYSICAL REVIEW E63 051101
ergy for a system of two spherically shaped concentric n
magnetic dielectrics. We will envisage that there is one co
pact sphere forr ,a, and one semi-infinite similar medium
for r .b, so that there is a vacuum gap of widthd5b2a in
between. There will be an attractive Casimir force betwe
the two media. One may object that there is still no straig
forward way to imagine measuring such a force; howev
this does not create difficulties for our main purpose, wh
is to calculate the Casimir force in a setting which mainta
spherical symmetry and yet avoids the complications w
internal, cutoff dependent, forces.

In the following four sections we shall deal with the qua
tum statistical mechanical theory, with an emphasis on
static limit ~zero Matsubara frequency, where derivations
more simple!. Thereafter, for comparison we consider t
alternative field theoretical approach, limiting us for simpl
ity to the case of perfect metallic walls atr 5a,b. The re-
sulting expressions for the free energy are Eq.~18! for the
static case~Matsubara frequency equal to zero! and Eq.~40!
for the time-dependent case~general Matsubara frequency!.
These expressions are obtained within the statistical
chanical approach. Within the field theoretical approach,
finite-temperature free energy is given by Eq.~68! assuming,
as mentioned, perfectly conducting walls.

There is one notable difference between the statistical
chanical approach and the field theoretical approach, as f
the free energy is concerned. In the first of these cases
method is basically more simple, at least in principle, as
needs only knowledge about the mode eigenvalues of
oscillating dipole moments in the dielectric medium; see E
~3!. These eigenvalues are again related to the pair corr
tion function. In the second case the calculation is more
direct, as one first calculates the surface force~arising from
the mutual interaction! on the outer surface implying use o
Maxwell’s stress tensor, and thereafter relates the force to
free energy via integration of Eq.~67!. That is, the field
theoretical method involves use of the two-point functio
for the electric and magnetic fields. As we also want to sh
that the results obtained by these widely different meth
are in agreement, we consider some cases that are ea
analyze analytically, by both methods.

We ought to stress again the conceptual difference
tween the two methods studied in this paper. By the fi
theoretical method the Casimir effect is regarded as the
ergy shift due to the frequency eigenvalues of the quanti
electromagnetic field in the presence of dielectric media.
the more recent statistical mechanical method this ene
shift is regarded as a consequence of thedipole-dipole inter-
action between oscillating dipole moments embedded in
molecules of the media. The latter viewpoint can be reali
by exploiting the analogy that exists between phonons i
solid, and electromagnetic waves or photons in vacu
Then impurities in the solid will be the analog to dielectr
particles. These impurities will couple to the phonons of
solid and modify their frequencies. If, however, one wants
do the statistical mechanics of the latter system, e.g., to
culate its free energy, then one can first integrate out
coordinates of the pure solid that appear in the path inte
representation of the quantized problem. With harmonic
05110
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cillators one encounters in this way Gaussian integrals wh
can easily be calculated. The result is independent of
impurities, except thatinteractionsbetween them are intro
duced. Thus, the resulting change in free energy can be
lated to these induced interactions~being in general time
dependent! in the system of impurities. Likewise, in this pic
ture the dipole-dipole interactions are related to the Casi
free energy. We employ Gaussian electromagnetic unit
this paper.

II. GENERAL REMARKS

Consider the free energyF(T) due to the mutual interac
tion between two spherical dielectric bodies with concen
surfaces atr 5a and r 5b. The attractive Casimir force be
tween the surfaces, per unit area at the outer surface, is e
to f 521/ @4pb2#]F/]b. As shown earlier for the case o
plates@19#, this Casimir force can be interpreted as the d
persion force arising from thermal fluctuations of molecu
dipole moments. By our quantum statistical mechanical c
siderations this also incorporates the quantum fluctuation
T50. That means, all fluctuations can be regarded as pu
thermal for anyT. The difference between classical an
quantum situations is that in the former case these fluc
tions vanish atT50 while in the latter case they remai
finite. In Ref. @20# we considered the low density~or small
«21) version of the single-body problem showing, as me
tioned above, that the divergences are due to the contin
model of the medium. A cutoff in length scale is needed. F
realistic systems this cutoff is determined by the molecu
hard cores through their influence upon the pair correlat
function. For two polarizable particles the free energy due
their mutual attraction can be written as@19,25#

bF52
1

2 (
n51

`
1

n
~a1ca2c!n5

1

2
ln~12a1ca2c!, ~2!

with b51/kBT. Thec represents the potential energy of th
dipole-dipole interaction which for generalK @see Eq.~3!
below# is given by Eqs.~6! and ~7! below. Now the two
particles can be generalized to and regarded to be our
spherical bodies, in the same way as two semi-infinite pa
lel plates were treated in Ref.@19#. That means, the two
spherical bodies are regarded as two particles with m
internal degrees of freedom. In this way Eq.~2! becomes a
short hand notation whereinc represents the interaction be
tween two points in the two bodies~over which we inte-
grate!, and the polarizabilitiesa1 anda2 become the respec
tive internal correlation functions of the two bodies wi
their mutual interactionc switched off. As noted in Ref.@19#
the expression~2! is formally exact for coupled harmoni
oscillators, i.e., the model that we are employing for t
polarizable particles. In terms of graphs, expression~2! rep-
resents the ring graphs in theg ordering for the long-range
forces, g being the inverse range of interaction@26#. For
coupled oscillators Eq.~2! above and Eq.~3! below are exact
results@27#.

Extending to the quantum mechanical case, Eq.~2! gen-
eralizes to
1-2
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bF5
1

2 (
K

ln~12a1KcKa2KcK!, ~3!

where K52pn/b with n integer ~i.e., nP^2`,`&). Note
that K5\zn , where zn is the Matsubara frequencyzn
52 iv andv is the frequency.

For low density~or smalla) only the first term in the sum
~2! is needed. This is the situation considered in Ref.@20#
and found there, after some transformations, to be in ag
ment with earlier works. The first term means simply th
one takes the~radiating! dipole interaction squared, averag
~integrate! over the fluctuating dipole moments, and fina
integrate over the two media. Thus

F5r2E dr1dr2F, ~4!

wherer is the particle density,r 1,a, r 2.b, and@19#

bF52
3

2 (
K

aK
2 @2cDK

2 ~r !1cDK
2 ~r !#, ~5!

where r5r22r1. ~Here r1 and r2 are positions in different
media, so double counting does not occur.! The radiating
dipole interactions used in Eq.~5! can be written as

c~12!5cDK~r !DK~12!1cDK~r !DK~12!, ~6!

with

DK~12!53~ r̂ â1K!~ r̂ â2K!2â1Kâ2K ,

DK~12!5â1Kâ2K .

Here the hats denote unit vectors, andaiK is the Fourier
transform of the fluctuating dipole moment of particle nu
ber i in imaginary time; see Eq.~5.2! in Ref. @25#. Explicitly,
from Eq. ~5.10! in Ref. @25#,

cDK~r !52
e2t

r 3 S 11t1
1

3
t2D ,

cDK~r !52
e2t

r 3

2

3
t21

4p

3
d~r !, ~7!

with

t5
ivr

c
52

Kr

\c
for Im~v!,0 ~or K,0!,

and2K→uKu when extending toK.0 in ~7! @see Eq.~5.11!
in Ref. @25##.

For generalK we are not able to calculate the integral~4!
in a direct way~but we can calculate it indirectly for arbi
trary density, as will be argued later, in Sec. IV!. We can
integrate, however, forK50. The integral of interest then
becomes
05110
e-
t
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r 1,a, r 2.b

dr1dr2

1

r 6
, r 25r 1

21r 2
222r 1r 2 cosu. ~8!

This integral can be evaluated in closed form@7# ~second
reference!. However, in Sec. III we want to extend this low
density evaluation to the case of arbitrary density or arbitr
«. To do so, we need the contributions related to the vari
spherical harmonics. Thus we will here perform an exp
sion of the integral. This will also be used as an independ
verification at the end of Sec. IV, where the more gene
theory developed there for arbitrary values ofK turns out to
yield the correct result whenK→0.

Using spherical coordinates to integrate over the anglu
betweenr1 and r2 we first obtain (x52cosu)

J5E
21

1 dx

~r 1
21r 2

212r 1r 2x!3

5
1

4r 1r 2
F 1

~r 22r 1!4
2

1

~r 21r 1!4G
5

1

2r 1r 2
5 (

l 51

`
~2l 12!~2l 11!2l

6 S r 1

r 2
D 2l 21

, ~9!

performing a series expansion to make it easy to relate to
result for high density. Then,

I 58p2E
0

a

r 1
2dr1E

b

`

r 2
2dr2J5

8p2

3 (
l 51

`
~ l 11!l

2l 11
s l ,

~10!

with s l5(a/b)2l 11.
Inserted in Eq.~4! we obtain (a05a)

bF52br2
3

2
a232I 52

1

2
~«21!2(

l 51

`
~ l 11!l

2l 11
s l .

~11!

Note that for small «21, Eq. ~11! will be the high-
temperature result for which onlyK50 contributes. This
high-temperature result at low density may in itself be
limited interest as it does not go beyond earlier results.
here we use it as a basis to make further developments. S
the next section the formalism is generalized to arbitr
density or«, although it is still restricted toK50. In Sec. IV,
a derivation that encompasses both arbitrary« and K is
given.

III. THE STATIC CASE

For simplicity we first consider thestatic case, by which
we mean that the frequency is zero (K50). Then the elec-
tromagnetic dipole-dipole interaction is the well-know
static, time-independent~also called instantaneous! one. By
the time-dependentcase we mean the general situation w
KÞ0. Then the dipole-dipole interaction will be the radia
ing or dynamical electromagnetic field where the time de
due to the finite speed of light is involved. Note that in ge
1-3
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eral both the static and the dynamic cases contribute to
Casimir effect. The former, being proportional toT, contains
the whole effect whenT→`, but vanishes whenT→0.

For general« one should sum up the series in Eq.~2!.
This will not be a simple task. However, one can include
strength factorl along with the perturbing interactionc and
differentiate Eq.~2! @or Eq. ~3!# to obtain

b
]F

]lU
l51

52c~a1cca2!, ~12!

where

cc5
c

12a1ca2c
.

Here thea1cca2 will be the pair correlation function for the
fluctuating dipole moments. As shown in Appendix A in Re
@19# thecc ~apart from a simple factor! is the Green function
for the electromagnetic problem with the dielectric mediu
present whilec is the one for vacuum. Thus we can utiliz
Maxwell’s equations for electrostatics to obtain this zero f
quency Green function orcc in the presence of two dielec
tric spheres.

The electrostatic potentialF fulfils the Laplace equation
¹2F50 with «5const. Splitting off the spherical harmon
factor Ylm5Ylm(u,w),

F5F l~r !Ylm~u,w!, ~13!

we can write the radially dependent term in the form

F55
1

« S a

r D l 11

1BS r

aD l

, r ,a,

CS a

r D l 11

1C1S r

aD l

, a,r ,b,

DS a

r D l 11

, b,r .

~14!

From the boundary conditions the coefficients can be de
mined. We give the coefficientD belonging to the exterior
region

D5
~2l 11!2

~«21!2~ l 11!l

Al

~12Als l !
, ~15!

where

Al5
~«21!2~ l 11!l

@«~ l 11!1 l #~« l 1 l 11!
and s l5S a

bD 2l 11

.

~16!

The coefficientD represents the change of the field forr
.b relative to the«51 case for a given point source. Vi
Eq. ~12! the free energy is now obtained in a straightforwa
way. For small«21 the quantity~12! is twice the quantity
~11!. Thus the expression~12! becomes
05110
he

a

-

r-

b
]F

]l U
l51

52(
l 51

`

~2l 11!
Als l

12Als l
. ~17!

As we will argue belowAls l will be proportional to the
strength factor squared,l2. Thus integrating Eq.~17! we
obtain the free energy

bF5
1

2 (
l 51

`

~2l 11!ln~12Als l !, ~18!

which clearly yields an attractive force between the tw
spherical bodies.

It should be noted that the series~18! is convergent as it
contains no self-energy. From Eq.~16! it is seen thatAl<1
and s l decays similar to an exponential asl→`, implying
Als l,1. Further, no cutoff is needed as Eq.~18! only in-
cludes the free energy shift due to the mutual interact
between the two bodies. A ‘‘self-energy’’ would arise if in
teractions within each body were considered. But yet
necessary minimum distance between molecules would
vent the latter expression from diverging@20#.

IV. FURTHER ANALYSIS OF THE STATIC CASE

The time-dependent case (KÞ0) will be more complex to
handle as we are not able to perform analytically the gen
alization of the integration~9! that gave the results~11! and
Eq. ~18!. We find, however, that this case can be hand
indirectly, noting that the quantity

M5a1ca2c ~19!

in Eqs.~2! and~12! can be regarded as a matrix. We want t
trace of these expressions@as well as the expression~3!#,
which amounts to integrating over positions and dipolar m
ments of the particles. The matrix can be transformed int
diagonal matrixL through some matrixS,

M5SLS21. ~20!

Then

Tr~Mq!5Tr~Lq!5(
i

l i
q ,

wherel i are the diagonal elements ofL. Also,

~Mq! i j 5(
l

Sil ~S21! l j l l
q . ~21!

Thus to obtain the free energy~2! or ~3! we only need the
eigenvaluesl l . Use of the spherical harmonicsYlm for our
present problem produces such a diagonalization and, a
results~17! and ~18! show, theAls l represent these eigen
values. The prefactor 2l 11 is simply the degeneracy facto

However, without performing the integration~10! the
identification ofAls l with the appropriate eigenvalues is n
obvious and cannot be concluded from Eq.~15! alone. Then
we turn to Eq.~12! and consider the correlation function~or
the equivalent Green function! which can be expanded as
1-4
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a1cca25
a1ca2

12a1ca2c
5a1ca2(

n50

`

Mn ~22!

with M5a1ca2c. Applying S theM is made diagonal such
that

S21a1cca2S5S21a1ca2S
1

12L
, ~23!

andL or its eigenvaluesl i can be identified via the ratio

S21
a1cca2

a1ca2
S5

1

12L
. ~24!

Here theD in Eq. ~15! represents the numerator~the full
correlation function!, while the denominator can be ident
fied with the first term in a chain bond expansion with o
single potential bondc and two hyperverticesa1 anda2 ~or
correlation functions for the two media with their mutu
interaction switched off!. By chain bond expansion we mea
the graphical representation of the terms in the expan
~22!, where hyperverticesa i alternate with potential bond
c. This notation has its origin in the statistical mechani
theory of fluids @26#. To go beyond standard mean fie
theory the Mayer graph expansion can be rearranged, an
chain bond will then become the leading correction~for
forces of long range! to the correlation function of the refer
ence system~e.g., hard spheres!. In the present case with
harmonic oscillators the expansion turns out to be exact
the pair correlations of amplitudes~corresponding to Gauss
ian fluctuations!.

The first term of the expansion~22! is now obtained by
considering the two spherical bodies separately, or equ
lently by considering Eq.~14! first with a50 and thereafter
with b5`. Then there will be no multiplec bonds going
back and forth, as there are no longer two media pres
First take away the inner sphere, which is done by putt
a50. Solving forD one obtains (B50)

D5D05
2l 11

«~ l 11!1 l
C. ~25!

The amplitude ratioD0 /C will representa2 ~or a1). Sec-
ondly, take away the outer sphere, which is done by put
b5`. Solving forC one then obtains (D50,C150)

C5C`5
2l 11

« l 1 l 11
. ~26!

The amplitude ratioC` /(1/«) @see Eq.~14!# will represent
a1 ~or a2). Thus D0 will representa1ca2 as c is repre-
sented by 1/«. Likewise theD as given by Eq.~15! repre-
sents the full correlation~or Green! function as both sphere
are present, by which the ratioD/D0 yields the sought ei-
genvalues of Eq.~24!.

Combining Eqs.~25! and ~26!,

D05
~2l 11!2

@«~ l 11!1 l #~« l 1 l 11!
. ~27!
05110
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Relating this to Eqs.~15! and ~24! we see that the eigenva
ues ofL arel l5Als l , D/D051/(12l l). Thus we recover
the results~17! and ~18! whenl l is used in the expression
~12! and ~2!, taking into account the degeneracy factorl
11. That means, the present indirect approach is fully c
sistent with the explicit integration~10! that led to the same
results.

V. THE TIME-DEPENDENT CASE

Including the time dependence the solutions of Maxwe
equations become more complex. One has to solve the ve
wave equation, and the fields have to satisfy the bound
conditions at the two surfaces. Again the spherical harmon
Ylm can be used, and the remaining problem how to deco
pose the vector fields parallel and transverse to the sphe
surfaces is conveniently dealt with in terms of the TM~trans-
verse magnetic! and TE~transverse electric! mode@28#. Ap-
plication of the angular momentum operatorL5(1/i )r3“

~with \51) creates a vector normal tor , i.e., r•L50, and is
thus parallel to the spherical surfaces. AsL commutes with
the ¹2 operator of the wave equation, and asL does not
contain differentiation with respect tor, the wave equation
has TM solutions of the form

B5
F~r !

r
LYlm , ~28!

whereF(r ) is some function ofr. Likewise the TE solutions
follow with B replaced byE.

The E field is now obtained from

“3B5
«

c

]E

]t
52 ik«E, ~29!

wherek5v/c. Thus we need the formula@28#

i“3L5r“22“S 11r
]

]r D . ~30!

Now applying boundary conditions on the spherical surfac
we find that the condition on the radial component ofE
coincides with that ofB, so that we need its componentE'

transverse tor which comes from the last term in Eq.~30!
where only derivatives with respect to the polar angles
needed from the“ operator. The latter again act only onYlm
which are the same on both sides of the interfaces and
thus be disregarded as far as boundary conditions are
cerned. Therefore we are left with ther dependence ofE ,
where the term of interest is given by

S 11r
d

dr D S F~r !

r D5
dF~r !

dr
. ~31!

The solutions of the wave equation for a given frequency
the Riccati-Bessel functions. As independent pair of fun
tions it is convenient to choose the functions that are prop
tional to r j l(kr) and torhl

(1)(kr); the first one because of it
finiteness at the origin, the second because of outgo
boundary conditions at infinity. After frequency rotation, a
1-5
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convenient normalization, these are the functions denote
sl andel in the field theory section below, in Eq.~53!. For
simplicity we will in the present section omit the subscriptl.
We will let subscriptsa,b refer to functions taken atr
5a,b, and add an extra subscript« to indicate that the func-
tion is taken inside a dielectric medium. As in Eq.~14! we
can now write

F~r !5H e«1Bs« , r ,a,

Ce1C1s, a,r ,b,

De« , b,r .

~32!

As compared to Eq.~14! the coefficient 1/« for r ,a has
been dropped since theF(r ) represents the magnetic field
but has no further consequence as it only affects the o
coefficients by a proportionality factor«. Requiring continu-
ity of the tangential componentsB' andE' across the sur-
faces we obtain the equations

ea«1Bsa«5Cea1C1sa ,

1

«
~ea«8 1Bsa«8 !5Cea81C1sa8 ,

Ceb1C1sb5Deb« ,

Ceb81C1sb85
D

«
eb«8 , ~33!

where we emphasize that the primes here mean differe
tion with respect tor.

To obtain the eigenvalues of interest we now proceed
in Sec. IV. So as in Eq.~25! we find from the two last
members of Eq.~33! ~i.e., a50)

D5D05c2C, with c25«
ebsb82eb8sb

«eb«sb82eb«8 sb

, ~34!

and as in Eq.~26! we find from the two first members of Eq
~33! ~i.e., b5` andC150)

C5C`5c1 , with c15
ea«8 sae2ea«sa«8

«ea8sa«2easa«8
. ~35!

Combining these we obtain, similar to Eq.~27!,

D05c1c2 . ~36!

As explained below Eq.~24! and in connection with Eqs
~25! and ~26!, this D0 represents the chain with a sing
potential bondc. The full chain bond@see explanation below
Eq. ~24!# will be obtained by solving Eqs.~33! as they stand.
This yields

D5
D0

12l« l
, ~37!

where
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l« l5
~«sa8sa«2sasa«8 !~«eb8eb«2ebeb«8 !

~«ea8sa«2easa«8 !~«eb«sb82eb«8 sb!
~38!

are the eigenvalues of interest in the construction of the
energy; see the argument above Eq.~27! in Sec. IV.

The static case (v50) is recovered by puttinge«5e
51/r l and s«5s5r l 11, which yields l« l5Als l in accor-
dance with Eq.~15!. Note that Eqs.~33! are somewhat dif-
ferent from those used in the static case as« is replaced by
1/« while l and l 11 are interchanged, but the result is th
same.

WhenvÞ0 there is also another set of modes, namely
TE modes. They are obtained by replacingB with E in Eq.
~28!, and by interchangingB andE in Eq. ~29! while remov-
ing the factor« and the minus sign on the right hand sid
Again imposing boundary conditions, Eqs.~33! are recov-
ered, except that the factor 1/« is no longer present. Solving
for D we recover the results~34!–~38! also, except that all
factors« are no longer present. The eigenvalues of inter
now become

l l5
~sa8sa«2sasa«8 !~eb8eb«2ebeb«8 !

~ea8sa«2easa«8 !~eb«sb82eb«8 sb!
. ~39!

With the eigenvalues~38! and ~39!, the expression~18! for
the free energy can be extended in a straightforward wa
the time-dependent case, and we get

bF5
1

2 (
K

(
l 51

`

~2l 11!@ ln~12le l !1 ln~12l l !#, ~40!

where the prefactor 2l 11 is again the degeneracy factor, an
K52pn/b with n integer~i.e., nP^2`,`&).

Finally it can be noted that for two parallel plates sep
rated by a distanced the free energy can be written in
similar general form. This energy can be found by integr
ing the surface force given by Eq.~2.9! of Ref. @19#. This
surface force is the famous Lifshitz result@29#. The parallel
plates result for the mutual free energy per unit area beco

bF5
1

4p (
K

E
zn /c

`

@ ln~12l«q!1 ln~12lq!#q dq,

~41!

where

l«q5Ane22qd, lq5Bne22qd,

with

An5S «2k

«1k D 2

, Bn5S 12k

11k D 2

,

k5F12~«21!S v

cqD 2G1/2

, K52 i\v5\zn52pn/b.

It should be noted that Eqs.~40! and~41! are general results
valid for arbitrary permittivity«(v) and temperature, and
they give the free energy due to the mutual interaction
1-6
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tween the two media. There are no diverging self-ene
terms. From Eq.~37! one must expectl« l , l l,1, and in the
K50 case ~18! one has the converging factors l
5(a/b)2l 11. This convergence will not be weakened wh
KÞ0 as then exponential factors also enter the solution
the wave equation for imaginary frequency.

VI. FIELD-THEORETICAL APPROACH:
THE SURFACE FORCE

We now consider, as an alternative, the field theoret
approach to the same physical system, with the simplifi
tion, however, that the compact media are perfect conduc
(«5`). Thus we can compare with the above general re
in this special case. We shall make use of the local Gre
function method, as developed in particular by Schwin
and his school. A basic reference to this kind of theory
plied to the case of spherical symmetry~a perfecly conduct-
ing shell! is Milton et al. @30#. To our knowledge Milton was
also the first to apply this theory to the compact ball probl
@4#. Generalization of the theory, so as to take into acco
electrostriction, was made by Brevik@31#. Later references
are @5–8# and @10,11#. ~This list does not include the mai
part of the references dealing with«m51 media, as well as
papers dealing with the mode summation method.! We now
put \5c5kB51.

Once the assumption about perfect conductors is
cepted, the formalism becomes relatively simple. Since
fields in the regionsr ,a and r .b are equal to zero, we
have to consider the fields in the vacuum gap only. T
Green functionG(x,x8) for two spacetime pointsx and x8
has a Fourier transformG(r ,r 8,v) defined by

G~x,x8!5E
2`

` dv

2p
e2 ivt G~r ,r 8,v!, ~42!

with t5t2t8. Note that the convention of Fourier transfor
used here implies a change of sign ofv ~i.e., v→2v),
compared to the definition used in the preceding sectio
e.g., Eq.~7!. The governing equation forG, as following
from Maxwell’s equations, is

“3“3G~r ,r 8,v!2v2G~r ,r 8,v!5v21d~r2r 8!,
~43!

and the spectral two-point function for the electric field co
ponents is

i ^Ei~r !Ek~r 8!&v5~4p!G ik~r ,r 8,v! ~44!

~the prefactor 4p appearing because of our present use of
Gaussian system of units!. There are two scalar Green fun
tions Fl(r ,r 8) andGl(r ,r 8) since there are two independe
field modes. The connection between these functions and
spectral two-point functions is

i ^Er~r !Er~r 8!&v5
~4p!

rr 8
(
l 51

`
2l 11

4p
l ~ l 11!Gl~r ,r 8!,

~45!
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i ^E'~r !E'~r 8!&v5~4p!(
l 51

`
2l 11

4p Fv2Fl~r ,r 8!

1
1

rr 8

]

]r
r

]

]r 8
r 8Gl~r ,r 8!G , ~46!

i ^Hr~r !Hr~r 8!&v5
~4p!

rr 8
(
l 51

`
2l 11

4p
l ~ l 11!Fl~r ,r 8!,

~47!

i ^H'~r !H'~r 8!&v5~4p!(
l 51

` Fv2Gl~r ,r 8!

1
1

rr 8

]

]r
r

]

]r 8
r 8Fl~r ,r 8!G . ~48!

Here, it is assumed that the vectorsr and r 8 lie in the same
angular direction. The radial differencer 2r 8, however, does
not have to be small.

For simplicity we shall denote the scalar Green functio
generically byD l(r ,r 8) ~thus D l is eitherFl or Gl). Their
governing equation is

F ]2

]r 2
1

2

r

]

]r
1v22

l ~ l 11!

r 2 GD l~r ,r 8!52
1

r 2
d~r 2r 8!.

~49!

The solution contains spherical Bessel functions, and has
general form

D l~r ,r 8!5
ik

12C̃IC̃II

@ j l~kr,!2C̃Ihl
(1)~kr,!#@hl

(1)~kr.!

2C̃II j l~kr.!#, ~50!

wherek5uvu, C̃I and C̃II being constants. This form satis
fies the discontinuity condition following from Eq.~49! on
the radial derivative ofD l at r 5r 8, with the Wronskian
W$ j l(x),hl

(1)(x)%5 i /x2. Taking into account the boundar
conditions atr 5a,b we can determine the constants: for t
F ~or TE! mode we get

C̃IF~ka!5
s̃l~ka!

ẽ~ka!
, C̃IIF ~kb!5

ẽl~kb!

s̃l~kb!
, ~51!

whereas for theG ~or TM! mode

C̃IG~ka!5
s̃l8~ka!

ẽl8~ka!
, C̃IIG~kb!5

ẽl8~kb!

s̃l8~kb!
. ~52!

Here, we let prime mean differentiation with respect to t
whole argument. We now perform a complex frequency
tation v→ i v̂, k→ i uv̂u5 i k̂, and replace the conventiona
Riccati-Bessel functionss̃l(x)5x j l(x), ẽl(x)5xhl

(1)(x) by
new onessl ,el defined according to
1-7
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sl~x!5~2 i ! l 11s̃l~ ix !5Apx

2
I n~x!,

el~x!5 i l 11ẽl~ ix !5A2x

p
Kn~x!. ~53!

Here n5 l 11/2, I n and Kn are modified Bessel functions
and the Wronskian of importance now isW$sl ,el%521.
The frequency rotation implies that we replace the ‘‘tilde
constantsC̃ by new constantsC, in accordance with the re
lation C̃( ix)5(21)l 11C(x). Explicitly,

CIF~x!5
sl~x!

el~x!
, CIIF ~y!5

el~y!

sl~y!
,

CIG~x!5
sl8~x!

el8~x!
, CIIG~y!5

el8~y!

sl8~y!
, ~54!

where we here and henceforth letx and y be defined by
x5 k̂a, y5 k̂b.

We now return to the expansions~45!–~48! for the spec-
tral two-point functions. Of main interest for us are the
functions when the pointsr and r 8 are close to each othe
but not overlapping. We moreover set the time-splitting p
rametert5t2t8 equal to zero. Substituting the two-poin
functions in Maxwell’s stress tensor we can calculate
surface force density on either of the two surfaces.
choose the outer surfacer 5b, since it will then become eas
to relate the force to the free energy. Writing for simplici
^Er

2(r )& instead of^Er(r )Er(r 8)& r 8→r , we obtain forT50
the various two-point functions atr 5b2:

^Er
2~b2 !&5

~4p!

pb4 E0

`dy

y (
l 51

`
2l 11

4p
l ~ l 11!

3
sl~y!2CIG~x!el~y!

sl8~y!2CIG~x!el8~y!
, ~55!

^E'
2 ~b2 !&5^Hr

2~b2 !&50, ~56!

^H'
2 ~b2 !&5

2~4p!

pb4 E
0

`

ydy(
l 51

`
2l 11

4p

3F sl~y!2CIG~x!el~y!

sl8~y!2CIG~x!el8~y!

1
sl8~y!2CIF~x!el8~y!

sl~y!2CIF~x!el~y! G ~57!

~the prefactors 4p again reflecting the Gaussian units!.
Using Maxwell’s stress tensor we can write the surfa

force density on the outer surface as

f b52
1

8p
^Er

2~b2 !&1
1

8p
^H'

2 ~b2 !&. ~58!
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Substituting Eqs.~55! and~57! into Eq.~58! we obtain, when
taking into account the governing equation for the Ricca
Bessel functions

sl9~y!5@11 l ~ l 11!/y2#sl~y! ~59!

@and similarly forel(y)#, that

f b5
21

2pb4E0

`

ydy(
l 51

`
2l 11

4p Fsl8~y!2CIF~x!el8~y!

sl~y!2CIF~x!el~y!

1
sl9~y!2CIG~x!el9~y!

sl8~y!2CIG~x!el8~y!G . ~60!

From this expression it is apparent how both modesF andG
contribute to the force.

We can write Eq.~60! as a sum of the following two
terms:

f b5 f b
(0)1 f b

int , ~61!

where

f b
(0)5

21

2pb4E0

`

ydy(
l 51

`
2l 11

4p Fsl8~y!

sl~y!
1

sl9~y!

sl8~y!G , ~62!

f b
int5

21

2pb2E0

`

dk̂(
l 51

`
2l 11

4p

]

]b
lnH F12

sl~x!

el~x!

el~y!

sl~y! G
3F12

sl8~x!

el8~x!

el8~y!

sl8~y! G J , ~63!

with y5 k̂b ~the operator]/]b is taken at constant value o
a). The expression~62! is the same as the inner contributio
to the surface force on a perfectly conducting shell@30,5#.
This term does not involve the interaction between the t
media, and will be discarded in the following. Of interest f
us is the interaction term~63!. As sl(y)5 1

2 ey and el(y)
5e2y for largey, it is evident from Eq.~63! that f b→0 if the
outer surface recedes to infinity while the inner surface
kept constant. This is physically as it should be.

A remark is here in order, concerning the physical me
ing of the two force terms in Eq.~61!, in particular the pos-
sibility of making measurements. It ought to be emphasiz
first of all, that the termf b

(0) is a mathematical construct. I
does not seem to be possible to measure this term, not
in principle. If one imagines the case of a perfectly condu
ing singular shell with radiusa, the case studied in Ref.@30#
and also in Ref.@5#, thenf b

(0) has to be taken together with
similar term on theoutsideto make up a surface force that i
principle ought to be measurable. However, as far as
know, no measurement has so far been made for even su
complete shell. In our case, whatis measurable, at least in
principle, is the interaction term~63!. For instance, one
might envisage to measure the attractive force betwee
micrometer-sized conducting sphere and a semisphe
1-8
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trough in a conducting plate, thus some kind of generali
tion of the atomic force microscope measurements repo
in Refs.@23# and @24#.

The expressions above refer to zero temperature.
transition to finite temperatures is made by means of a
cretization of the frequencies

k̂→K52pn/b, x→Ka, ~64!

with n an integer. The rule for going from frequency integr
to a sum over Matsubara frequencies is

E
0

`

dk̂→ 2p

b (
n50

`

8 , ~65!

where the prime on the summation sign means that thn
50 term is taken with half weight. The finite-temperatu
force expression accordingly becomes~recall that n5 l
11/2)

f b
int5

21

2pb2b
(
n50

`

8 (
l 51

`

n
]

]b
lnH F12

sl~x!

el~x!

el~y!

sl~y! G
3F12

sl8~x!

el8~x!

el8~y!

sl8~y! G J , ~66!

where nowx52pna/b, y52pnb/b.
As for measurements of a force such asf b

int there are
subtle problems although the free energy@Eq. ~68! below# is
well defined. One may imagine that the two spherical me
are liquids, and that the outer spherical shell can move.~The
inner shell can also move if liquid is added or remov
through a small pipe.! However, there is an extra complica
tion compared to the case of parallel plates, namely
change ofradiusof a spherical surface. This will change th
free energy associated with the surface tension. Although
latter change of energy is finite, a more precise evaluatio
it will obviously be a complex task. The molecular structu
has to be taken into account at the surface where the de
changes abruptly.

It can be noted, however, that the sum of the two surf
energies must be the opposite of the general result~40! for
a5b, i.e., with the two spherical surfaces fused togeth
One is then left with no surfaces at all, and the bulk fr
energy applies everywhere. However, simply puttinga5b in
a continuum approach does not work; Eq.~40! will diverge
unless a cutoff is introduced for largel to mimic the molecu-
lar diameter. Whether the self-forcef b

(0) in Eq. ~62! is pos-
sibly related to such a surface tension energy or not i
problem that we have so far not been able to clear up.

VII. THE FREE ENERGY, ANALYTICALLY
AND NUMERICALLY

Since we have calculated the force density on theouter
surface due to the mutual interaction, it is easy to derive
corresponding expression for the interaction free energyF int.
We imagine the outer surface to be displaced by a sm
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amount db, while the inner surface is kept constant. T
relation

f b
int52

1

4pb2

]F int

]b
~67!

is integrated fromb to infinity, noting thatF int50 at b5`.
Making use of Eq.~66! we thus obtain, dropping the supe
script ‘‘int,’’

bF52(
n50

`

8 (
l 51

`

n lnH F12
sl~x!

el~x!

el~y!

sl~y! GF12
sl8~x!

el8~x!

el8~y!

sl8~y! G J ,

~68!

valid at arbitrary temperatures. Comparing with the mo
general result of Eqs.~38!–~40! in Sec. V one finds that Eq
~68! agrees with these when«→` as then «sa8sa«

@sasa«8 , sa8sa«!sasa«8 , etc.@with sa5sl(x), etc., as intro-
duced above Eq.~32!#.

At T50, where the free energyF is the same as the
energyE, we can write

E5
1

paE0

`

dx(
l 51

`

n lnH F12
sl~x!

el~x!

el~y!

sl~y! G
3F12

sl8~x!

el8~x!

el8~y!

sl8~y! G J . ~69!

Expressions~68! and~69! hold for arbitrary widths of the
annular region. It is of interest, before embarking on nume
cal evaluations, to analyze some limiting cases by analyt
means. The limiting case of immediate interest is that o
narrow slit, i.e.,

j[
b2a

a
!1. ~70!

This case is motivated physically from the fact that the C
simir measurements are made for small separations only,
also because we have in this way the possibility to check
results against the standard results for parallel plates in
limit when j→0.

At T50 we find, whenx andy lie close to each other@5#,

sl~x!

el~x!

el~y!

sl~y!
5

sl8~x!

el8~x!

el8~y!

sl8~y!
5e2nf, ~71!

to O(1/n) in the uniform asymptotic~or Debye! expansion.
Here

f52jA11z2F12
1

2

j

11z2
1•••G , z5

x

n
. ~72!

Keeping only the first term, we find theT50 interaction
energy to be

E5
2

pa (
l 51

`

n2E
0

`

dz ln~12e22jnA11z2
!. ~73!
1-9
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This expression can be processed further, if we mak
power expansion of the logarithm and take into account
property( l 51

` n2e2nf→2/f3 whenf→0 @32#. Then,

E5
21

2paj3
z~4!E

0

` dz

~11z2!3/2
52

p3

180a

1

j3
, ~74!

which corresponds to the following interaction energy p
unit surface~total surface areaA54pa2, andd5b2a):

E

A
52

p2

720

1

d3
. ~75!

This simple calculation thus provides us with a satisfact
check: Eq.~75! is the conventional expression for the C
simir energy of two parallel plates.~The expression include
the effect of retardation. That is, the distanced is much
larger than the characteristic wavelength of the absorp
spectrum of the medium.! Thus, by retaining the first orde
term in j we see that our theory reduces to the standarT
50 theory. Corrections to the theory arising from the curv
ture of the surfaces can in principle be worked out by go
to larger powers inj.

At finite temperatures, we obtain for the free energy

bF54(
n50

`

8 (
l 51

`

n ln~12e22jAn21n2t2!, t52pa/b.

~76!

This expression, as before, implies keeping of only the fi
term in the expansion~72!, but it puts no restriction on the
temperature.

Let us consider the limiting case of high temperatur
first going back to the expression~68!, holding for arbitrary
widths d. For the highest temperatures~classical limit!, only
the lowest Matsubara frequency (n50) contributes. As
x5nt, y5bnt/a, it is seen that we then need to evaluatesl
andel when the arguments tend to zero. As

sl~x!5
Ap

G~n11! S x

2D (n11/2)

, el~x!5
G~n!

Ap
S x

2D (2n11/2)

~77!

for small arguments, we have

sl~x!

el~x!

el~y!

sl~y!
5

sl8~x!

el8~x!

el8~y!

sl8~y!
5S a

bD 2l 11

, ~78!

so that the contribution fromn50 becomes

bF~n50!5(
l 51

`

~2l 11!lnF12S a

bD 2l 11G . ~79!

This is in agreement with our previous expression~18! (Al
51 when«→`), except from a factor 2. The physical re
son for this is that bothF and G modes contribute to Eq
~79!, whereas only one mode contributes in Eq.~18!. This
05110
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artifact in Eq.~79! is related to the fact that«5` is consid-
ered, while in Eq.~18! v50 is consideredbefore the limit
«→` is taken.

In the case of a narrow slit we obtain from Eq.~76! the
n50 contribution

bF~n50!52(
l 51

`

n ln~12e22jn!. ~80!

Again making a power expansion of the logarithm, and o
serving the relationship( l 51

` ne2nf51/f2 whenf→0, we
get

bF~n50!52
z~3!

2

1

j2
, ~81!

which corresponds to

bF~n50!

A
52

z~3!

8p

1

d2
. ~82!

Again, this is a satisfactory check, as Eq.~82! is the conven-
tional high-temperature result for parallel plates.

For anarrow slit we may also obtain the known result fo
a parallel plates configuration more generally. In the wa
equation the terml ( l 11)/r 2. l ( l 11)/a2 is replaceable with
k'

2 wherek' is the transverse wave vector, i.e.,

n25S l 1
1

2D 2

. l ~ l 11!5k'
2 a2. ~83!

When l is large we can regard it as continuous quanti
whereby the sum can be replaced by an integral. We t
have

(
l 51

`

~2l 11!→E ~2l 11!dl52a2E k'dk' . ~84!

Further,

jnt5
2pn

b
d5Kd,

jn5
d

a
k'a5k'd, ~85!

or

2jAn21n2t252qd, with q25k'
2 1K2. ~86!

Insertion of this into Eq.~76! yields

bF54a2(
n50

`

8 E
zn

`

qdq ln~12e22qd!, ~87!

usingqdq5k'dk' . The surface force density thus becom
(b→a)
1-10
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f b52
1

4pa2

]F

]d
52

2

pb (
n50

`

8 E
zn

`

q2dq
e22qd

~12e22qd!
,

~88!

with zn5K52pn/b being the Matsubara frequency. This
in agreement with Eq.~2.9! in Ref. @19# (An5Bn51 for «
5`). It is also in agreement with Eq.~3.8! in Ref. @33# @it
should be mentioned thatq2 in our present notation, Eq
~86!, is the same ask2 in Ref. @33#, and also that the distanc
d above is the same asa in Refs. @33# and @19##. Note that
whereas the expression~88! presupposes a narrow slit~large
l ), there is no restriction on the temperature.

After these preliminary analytic considerations we no
present numerically calculated results for the free ene
when the walls are conducting («5`). All results are given
in nondimensional form. The numerics turned out to
rather demanding; as preliminary tests indicated that Ma
would be insufficient for our purpose we turned to stand
FORTRAN routines and made use of them throughout. O
logarithmic plot with base 10, Fig. 1 shows ho
log10(2bFt)5 log10(22paF) varies with relative width
d/a for various values of the nondimensional temperaturt
52pa/b. At zero temperature, an integration routine w
used for thex integral in Eq.~69!. At finite temperatures, the
double sum in Eq.~68! was calculated as it stands~thus
without expansion procedures for the Riccati-Bessel fu
tions!, with use of theFORTRAN library for the Bessel func-
tions of half-integer order. Allowing the numerical tole
ances in thel sum as well as in then sum to be equal to
1026, we found for the case oft50.01 andd/a50.1 the
necessary number of terms in then sum to be about 415 000
For larger widths the necessary number of terms turned
to be considerably less; for instance ford/a51 and the same
t the number was about 8900.

A characteristic property of the curves in Fig. 1 is th
they tend to overlap in the case oflow temperatures. Thus

FIG. 1. Logarithm~base 10! of mutual nondimensional free en
ergy, log10(2bFt)5 log10(22paF), versus relative widthd/a for
various values of the nondimensional temperaturet52pa/b. For
0<t,1 the curves are overlapping~i.e., only one curve is drawn!,
consistent with Fig. 3.
05110
y,

e
b
d
a

-

ut

t

the curve calculated fort50 ~via anx integral and anl sum!
is indistinguishable from other curves calculated in t
whole temperature region~via a double sum! up to t51.
Numerically, for d/a50.1 the difference in log10(2bFt)
between the casest50 andt51 is found to be about 1024.
For zero temperature, as mentioned,F is the same as the
energyE.

Whereas the representation in Fig. 1 is most useful
low temperatures, we show in Fig. 2 the representation
log10(2bF) versusd/a. This is convenient for high tem
peratures, since now the curves for hight stay inside the
figure and tend to overlap. The curve calculated fort550 is
actually indistinguishable from the shown curve referring
t5200. This fact reflects thatF is proportional tot, thus in
accordance with the behavior of high temperature mut
free energies for classical harmonic oscillators in gene
For a narrow slit, we expect that the calculation agrees w
the approximate formula~82!. We may check this in the cas

FIG. 2. Same as Fig. 1, but log10(2bF) is shown, as appropri-
ate for the case of high temperatures. Fort larger than about 50 the
curves are overlapping~only one curve is drawn!, consistent with
Fig. 3.

FIG. 3. Variation of F versus t for the case of d/a
5$0.05,0.075,0.1%.
1-11
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of t5200, d/a50.05: the machine calculation then yield
bF52249.7, whereas Eq.~82! yields bF52 1

2 z(3)(a/d)2

52240.4, thus an error of 4 %. The reason why the accu
here is only moderate, is most likely that the width parame
d/a50.05 is not small enough to represent a narrow slit t
high precision. Generally, it turned out to be difficult to ca
culate cases of higher temperatures or more narrow slits
those shown in the figures, without entering into special
terations of theFORTRAN routines.

Finally, it is of interest to display explicitly the free ene
gy’s low-temperature plateau, and its high-temperature p
portionality to t, for a fixed value of the relative width. Thi
is done in Fig. 3, for the cases ofd/a5$0.05,0.075,0.1%. The
horizontal plateau is seen to prevail quite accurately unt
gradual increase takes place in the region roughly betw
t510 andt530 (log103051.477). It is notworthy that this
behavior is in agreement with the following simple physic
argument: The most significant frequenciesv contributing to
F are generally of the same order as the inverse width of
th

of

.

rin

rin

05110
y
r

a

an
l-

o-

a
en

l

e

gap, i.e.,v;1/d. Now, from Wien’s displacement law we
know that the maximum of a blackbody distribution occu
at a frequency ofvm52.8/b. Temperature effects are ex
pected to become significant whenv is comparable tovm .
Putting v;vm we obtaint52pa/b;2a/d. In the present
case this amounts tot;20240 (log10 t;1.321.6), which is
seen to be in good agreement with the location of the sh
der in Fig. 3. Moreover, for higher temperatures, the prop
tionality of F to t is clear from the figure.
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